1. Akopov A.S., Beklaryan A.L., Tkhakur M., Verma B.D. Razrabotka parallel'nykh geneticheskikh algoritmov veschestvennogo kodirovaniya dlya sistem podderzhki prinyatiya reshenij sotsial'no-ehkonomicheskogo i ehkologicheskogo planirovaniya // Biznes-informatika. 2019. T. 13. № 1. c. 33-44.
2. Akopov A.S., Beklaryan A.L., Khachatryan N.K., Fomin A.V. Razrabotka adaptivnogo geneticheskogo optimizatsionnogo algoritma s ispol'zovaniem metodov agentnogo modelirovaniya // Informatsionnye tekhnologii. 2018. T. 24. № 5. S. 321-329.
3. Khivintsev M.A., Akopov A.S. Primenenie mnogoagentnogo geneticheskogo algoritma dlya poiska optimal'nykh strategicheskikh i operativnykh reshenij // Biznes-informatika. 2014. № 1 (27). S. 23-33.
4. Akopov A. S. Parallel genetic algorithm with fading selection // International Journal of Computer Applications in Technology. 2014. Vol. 49. No. 3/4. P. 325-331.
5. Akopov A. S., Hevencev M.A. A Multi-agent genetic algorithm for multi-objective optimization, in Proceedings of 2013 IEEE International Conference on Systems, Man and Cybernetics, Manchester, 2013, pp. 1391–1395.
6. Akopov A.S., Beklaryan L.A., Thakur M., Verma D.B. Parallel multi-agent real-coded genetic algorithm for large-scale black-box single-objective optimisation // Knowledge-Based Systems. 2019. Vol. 174. pp. 103-122.
7. Beklaryan A.L, Akopov A.S. Simulation of Agent-rescuer Behavior in Emergency Based on Modified Fuzzy Clustering, in AAMAS'16: Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems, Richland: International Foundation for Autonomous Agents and Multiagent Systems, 2016. pp. 1275–1276.
8. Bezdek C.J. Cluster Validity with Fuzzy Sets // Journal of Cybernetics, vol. 3, no. 3, pp. 58–73, 1974.
9. Bezdek C.J., Pattern Recognition with Fuzzy Objective Function Algorithms. Norwell, Mass.: Kluwer Academic Publishers, 1981.
10. Bleuler S., Brack M., Thiele L., Zitzler E. Multiobjective genetic programmin.g: reducing bloat using SPEA2, in Proc. 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), Seoul, South Korea, 2001, pp. 536–543.
11. Darrell W., Rana S.B., Heckendorn R.B. The Island Model Genetic Algorithm: On Separability, Population Size and Convergence // Journal of Computing and Information Technology. 1999. Vol. 7, no. 1, pp. 33-47.
12. Deb K., Pratap A., Agarwal S., Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II // IEEE Trans. Evol. Comp. Vol. 6, no. 2, pp. 182-197, 2002.
13. Fliege J., Drummond L.M.G., Svaiter B.F. Newton’s Method for Multiobjective Optimization // SIAM J. Optim., vol. 20, no. 2, pp. 602–626, 2009.
14. Jiang S., Ong Y., Zhang J., Feng L. Consistencies and Contradictions of Performance Metrics in Multiobjective Optimization // IEEE Transactions on Cybernetics, 2014. Vol. 44, no. 12, pp. 2391–2404.
15. Miller B., Goldberg D. Genetic Algorithms, Tournament Selection, and the Effects of Noise // Complex Systems, vol. 9, pp. 193–212, 1995.
16. Zhang Q., Zhou A., Zhao S., Suganthan P.N., Liu W. Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition // Tech. Rep. CES-487. 2009. pp. 1–30.
17. Zitzler E., Thiele L. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach // IEEE Transactions on Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999.