1. Shiller A. V. Ot teorij k modelyam ehmotsij dlya iskusstvennogo intellekta — osnovnye metodologicheskie voprosy // Tsennosti i smysly. 2018, T. 4, № 56.
2. Shiller A. V. Expression of the modeled effects of emotions in artificial agents as a visual language // ???????. Problemy vizual'noj semiotiki. 2019, Vol. 22, no. 4.
3. Shiller A. V. Iskazheniya i oshibki modelirovaniya ehmotsij v iskusstvennom intellekte // Tsennosti i smysly. 2020, T. 5, № 69.
4. Anderson, A. K., & Phelps, E. A. (2001). Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature, 411(6835)
5. Anderson, B. A., Laurent, P. A., & Yantis, S. (2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences, 108(25
6. Avila-Garcia, O., & Ca?amero, L. (2004). Using hormonal feedback to modulate action selection in a competitive scenario. From animals to animats, 8
7. Belkaid, M., Cuperlier, N., & Gaussier, P. (2017). Emotional metacontrol of attention: Top-down modulation of sensorimotor processes in a robotic visual search task. PloS one, 12(9).
8. Belkaid, M., Cuperlier, N., & Gaussier, P. (2018). Autonomous Cognitive Robots Need Emotional Modulations: Introducing the eMODUL Model. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(1)
9. Blakemore, R. L., & Vuilleumier, P. (2017). An emotional call to action: Integrating affective neuroscience in models of motor control. Emotion Review, 9(4)
10. Boucenna, S., Gaussier, P., Andry, P., & Hafemeister, L. (2014). A robot learns the facial expressions recognition and face/non-face discrimination through an imitation game. International Journal of Social Robotics, 6(4)
11. Breazeal, C. (2003). Emotion and sociable humanoid robots. International journal of human- computer studies, 59(1-2)
12. Brooks, R. A. (1991). Intelligence without representation. Artificial intelligence, 47(1-3)
13. Ca?amero, L., & Gaussier, P. (2005). Emotion understanding: robots as tools and models. In Nadel, J. and Muir, D., editors, Emotional development: Recent research advances
14. Correia, F., Alves-Oliveira, P., Maia, N., Ribeiro, T., Petisca, S., Melo, F. S., & Paiva, A. (2016, August). Just follow the suit! trust in human-robot interactions during card game playing. In 2016 25th IEEE international symposium on robot and human interactive communication (RO-MAN) (pp. 507- 512). IEEE.
15. Courgeon, M., & Clavel, C. (2013). MARC: a framework that features emotion models for facial animation during human–computer interaction. Journal on Multimodal User Interfaces, 7(4)
16. Cowen, A., Sauter, D., Tracy, J. L., & Keltner, D. (2019). Mapping the passions: Toward a high- dimensional taxonomy of emotional experience and expression. Psychological Science in the Public Interest, 20(1)
17. Cully, A., Clune, J., Tarapore, D., & Mouret, J. B. (2015). Robots that can adapt like animals. Nature, 521(7553)
18. Damasio, A. R., Everitt, B. J., and Bishop, D. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex [and discussion]. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 351(1346):1413–1420.
19. de Gelder, B., De Borst, A. W., & Watson, R. (2015). The perception of emotion in body expressions. Wiley Interdisciplinary Reviews: Cognitive Science, 6(2)
20. Doncieux, S., Filliat, D., D?az-Rodr?guez, N., Hospedales, T., Duro, R., Coninx, A., ... & Sigaud, O. (2018). Open-ended learning: a conceptual framework based on representational redescription. Frontiers in neurorobotics, 12, 59.
21. Evans, D. A., Stempel, A. V., Vale, R., & Branco, T. (2019). Cognitive control of escape behaviour. Trends in cognitive sciences. Apr; 23(4)
22. Frijda, N. H. (1986). The emotions: Studies in emotion and social interaction.
23. Froese, T., & Ziemke, T. (2009). Enactive artificial intelligence: Investigating the systemic organization of life and mind. Artificial Intelligence, 173(3-4)
24. Gebhard, P. (2005). ALMA: a layered model of affect. In Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems (pp. 29-36). ACM.
25. Gratch, J., & Marsella, S. (2004). A domain-independent framework for modeling emotion. Cognitive Systems Research, 5(4)
26. Grossberg, S. (2018). Desirability, availability, credit assignment, category learning, and attention: Cognitive-emotional and working memory dynamics of orbitofrontal, ventrolateral, and dorsolateral prefrontal cortices. Brain and Neuroscience Advances, 2, 2398212818772179.
27. Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on pattern analysis and machine intelligence, 20(11)
28. Karaouzene, A., Gaussier, P., & Vidal, D. (2013, August). A robot to study the development of artwork appreciation through social interactions. In 2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL) (pp. 1-7). IEEE.
29. Krichmar, J. L. (2013). A neurorobotic platform to test the influence of neuromodulatory signaling on anxious and curious behavior. Frontiers in neurorobotics, 7, 1.
30. Lazarus, R. S. (1991). Emotion and adaptation. Oxford University Press.
31. Lindquist, K. A., & Barrett, L. F. (2012). A functional architecture of the human brain: emerging insights from the science of emotion. Trends in cognitive sciences, 16(11)
32. Man, K., & Damasio, A. (2019). Homeostasis and soft robotics in the design of feeling machines. Nature Machine Intelligence, 1(10)
33. Martin, P., Bourdot, P., & Touraine, D. (2011). A reconfigurable architecture for multimodal and collaborative interactions in Virtual Environments. In 2011 IEEE Symposium on 3D User Interfaces (3DUI) (pp. 11-14). IEEE.
34. Masuyama, N., Loo, C. K., & Seera, M. (2018). Personality affected robotic emotional model with associative memory for human-robot interaction. Neurocomputing, 272
35. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Petersen, S. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540)
36. Moerland, T. M., Broekens, J., & Jonker, C. M. (2018). Emotion in reinforcement learning agents and robots: a survey. Machine Learning, 107(2)
37. Moulin-Frier, C., Fischer, T., Petit, M., Pointeau, G., Puigbo, J. Y., Pattacini, U., ... & Chang, H. J. (2017). DAC-h3: a proactive robot cognitive architecture to acquire and express knowledge about the world and the self. IEEE Transactions on Cognitive and Developmental Systems, 10(4)
38. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1)
39. Najafi, M., McMenamin, B. W., Simon, J. Z., & Pessoa, L. (2016). Overlapping communities reveal rich structure in large-scale brain networks during rest and task conditions. Neuroimage, 135
40. Neftci, E. O., & Averbeck, B. B. (2019). Reinforcement learning in artificial and biological systems. Nature Machine Intelligence, 1(3)
41. Ochs, M., & Blache, P. (2016). Virtual reality for training doctors to break bad news. In European Conference on Technology Enhanced Learning (pp. 466-471). Springer.
42. O’Regan, J. K. and No?, A. (2001). What it is like to see: A sensorimotor theory of perceptual experience. Synthese, 129(1)
43. Ortony, A., Clore, G. L., and Collins, A. (1988). The Cognitive Structure of Emotions.
44. Pelachaud, C. (2009). Modelling multimodal expression of emotion in a virtual agent. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1535)
45. Pessoa, L. (2008). On the relationship between emotion and cognition. Nature Reviews Neuroscience, 9(2)
46. Pessoa, L. (2017). A network model of the emotional brain. Trends in Cognitive Sciences, 21(5)
47. Pfeifer, R., Lungarella, M., & Iida, F. (2007). Self-organization, embodiment, and biologically inspired robotics. Science, 318(5853)
48. Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron, 48(2)
49. Picard, R. W. (1997). Affective computing, volume 252. MIT press Cambridge.
50. Russell, J. A. & Barrett, L. F. (1999). Core affect, prototypical emotional episodes, and other things called emotion: dissecting the elephant. Journal of personality and social psychology, 76(5).
51. Russell, J. A., & Mehrabian, A. (1977). Evidence for a three-factor theory of emotions. Journal of research in Personality, 11(3)
52. Saint-Aim?, S., Le-P?v?dic, B., & Duhaut, D. (2009). iGrace–Emotional Computational Model for EmI Companion Robot. In Advances in Human-Robot Interaction, Vladimir A. Kulyukin. IntechOpen.
53. Sporns, O. (2010). Networks of the Brain. MIT press.
54. Tovote, P., Fadok, J. P., & L?thi, A. (2015). Neuronal circuits for fear and anxiety. Nature Reviews Neuroscience, 16(6)
55. Varela, F. J., Evan, T., and Eleanor, R. (1992). The embodied mind: cognitive science and human experience. MIT Press.
56. Wiese, E., Metta, G., & Wykowska, A. (2017). Robots as intentional agents: using neuroscientific methods to make robots appear more social. Frontiers in psychology, 8
57. Wu, T., Butko, N. J., Ruvulo, P., Bartlett, M. S., & Movellan, J. R. (2009). Learning to make facial expressions. In 2009 IEEE 8th International Conference on Development and Learning (pp. 1-6). IEEE.
58. Yacoubi, A., & Sabouret, N. (2018). TEATIME: A Formal Model of Action Tendencies in Conversational Agents. In ICAART (2)
Comments
No posts found