1. Akopov A.S., Beklaryan A.L. Stsenarnoe modelirovanie dvizheniya bespilotnykh transportnykh sredstv v iskusstvennoj dorozhnoj seti s ispol'zovaniem FLAME GPU // Iskusstvennye obschestva. 2021, T. 16, № 1 URL: https://artsoc.jes.su/s207751800014028-9-1/ DOI: 10.18254/S207751800014028-9
2. Akopov A.S., Beklaryan L.A., Beklaryan A. L., Belousov F.A. Modelirovanie dvizheniya ansamblya nazemnykh bespilotnykh transportnykh sredstv s ispol'zovaniem FLAME GPU // Informatsionnye tekhnologii. 2021, T. 27, № 7.
3. Akopov A.S., Beklaryan L.A., Khachatryan N.K., Beklaryan A.L., Kuznetsova E.V. Mnogoagentnaya sistema upravleniya nazemnymi bespilotnymi transportnymi sredstvami // Informatsionnye tekhnologii. 2020, T. 26, № 6.
4. Akopov A.S., Khachatryan N.K., Beklaryan L.A., Beklaryan A.L. Sistema upravleniya bespilotnymi transportnymi sredstvami na osnove nechetkoj klasterizatsii. Chast' 1. Model' dvizheniya transportnykh sredstv // Vestnik komp'yuternykh i informatsionnykh tekhnologij. 2020, T. 17, № 9.
5. Akopov A.S., Khachatryan N.K., Beklaryan L.A., Beklaryan A.L. Sistema upravleniya bespilotnymi transportnymi sredstvami na osnove nechetkoj klasterizatsii. Chast' 2. Nechetkaya klasterizatsiya i programmnaya realizatsiya // Vestnik komp'yuternykh i informatsionnykh tekhnologij. 2020, T. 17, № 10.
6. Akopov A.S., Beklaryan L.A. An Agent Model of Crowd Behavior in Emergencies // Automation and Remote Control, vol. 76, no. 10, 2015, pp. 1817–1827.
7. Beklaryan A.L., Akopov A.S. Simulation of Agent-rescuer Behaviour in Emergency Based on Modified Fuzzy Clustering / in Proc. of the 15th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2016), May, 9–13, 2016, Singapore, 2016, pp. 1275–1276.
8. Burger C., Schneider T., Lauer M. Interaction aware cooperative trajectory planning for lane change maneuvers in dense traffic / in 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2020, pp. 1–8.
9. Deo N., Rangesh A., Trivedi M.M. How would surround vehicles move? A unified framework for maneuver classification and motion prediction // IEEE Transactions on Intelligent Transportation Systems, vol. 3, no. 2, 2018, pp. 129–140.
10. Guo Y., Kalidindi V.V., Arief M., Wang W., Zhu J., Peng H., Zhao D. Modeling Multi-Vehicle Interaction Scenarios Using Gaussian Random Field / in IEEE Intelligent Transportation Systems Conference (ITSC2019). IEEE, 2019, pp. 3974–3980.
11. Helbing D., Johansson A., Al-Abideen H.Z. Crowd turbulence: The physics of crowd disasters / in the Fifth International Conference on Nonlinear Mechanics (ICNM-V), Shanghai, 2007, pp. 967–969.
12. Heywood P., Richmond P., Maddock S. Road Network Simulation Using FLAME GPU / in: Hunold S. et al. (eds) Euro-Par 2015: Parallel Processing Workshops. Euro-Par 2015. Lecture Notes in Computer Science, vol. 9523, Springer, Cham, 2015, pp. 430–441.
13. Iberraken D., Adouanc L., Denis D. Multi-Controller Architecture for Reliable Autonomous Vehicle Navigation: Combination of Model-Driven and Data-Driven Formalization / in 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2019, pp. 245–251.
14. Kiran M., Richmond P., Holcombe M., Shawn C.L., Worth D., Greenough C. FLAME simulating Large Populations of Agents on Parallel Platforms / in Proc. of 9th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2010), May, 10-14, 2010, Toronto, Canada, 2010, pp. 1633–1636.
15. Lakhal N.M.B., Adouane L., Nasri O., Slama J.B.H. Interval-based/Data-driven Risk Management for Intelligent Vehicles: Application to an Adaptive Cruise Control System / in 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2019, pp. 239–244.
16. Mullner D., Fastcluster: Fast Hierarchical, Agglomerative Clustering Routines for R and Python // Journal of Statistical Software, 2013, vol. 53, no. 9, pp. 1–18.
17. Richmond P., Coakley S., Romano D. Cellular Level Agent Based Modelling on the Graphics Processing Unit / in 2009 International Workshop on High Performance Computational Systems Biology, Trento, 2009, pp. 43–50.
18. Richmond P., Romano D. Template driven agent based modelling and simulation with CUDA / in Applications of GPU Computing Series, GPU Computing Gems Emerald Edition, Morgan Kaufmann, 2011, pp. 313–324.
19. Ries L., Langner J., Otten S., Bach J., Sax E. A Driving Scenario Representation for Scalable Real-Data Analytics with Neural Networks / in 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2019, pp. 2215–2222.
20. Treiber M., Hennecke A., Helbing D. Congested traffic states in empirical observations and microscopic simulations // Physical review E, vol. 62, no. 2, p. 1805, 2000.
21. Wang P., Shi T., Zou C., Xin L., Chan C. A Data Driven Method of Feedforward Compensator Optimization for Autonomous Vehicle Control / in 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2019, pp. 2012–2017.
22. Zhao D., Lam H., Peng H., Bao S., LeBlanc D.J., Nobukawa K., Pan C.S. Accelerated Evaluation of Automated Vehicles Safety in Lane-Change Scenarios Based on Importance Sampling Techniques // IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 3, 2017, pp. 595–607.
Comments
No posts found