1. Alastair C., Padraic M., Falk H. The multimodal nature of spoken word processing in the visual world: Testing the predictions of alternative models of multimodal integration // Journal of Memory and Language. 2017. Vol. 93. P. 276-303
2. Angel I., Dolores del Castillo M., Ignacio J., Serrano Jesus O. Connectionist Models of Decision Making // Chiang J. S. (ed.) Decision Support Systems. IntechOpen. 2010.
3. Bargh J., Chartrand T. The unbearable automaticity of being// American Psychologist. 1999. Vol. 54. No. 7. P. 462a479.
4. Bargh J. The four horsemen of automaticity: Awareness, intention, efficiency, and control in social cognition // Wyer, Robert S., Jr.; Srull, Thomas K. (eds.). Handbook of Social Cognition. Psychology Press. P. 1a40. 2014.
5. Bechtel W. Natural deduction in connectionist systems // Synthese. 1994. Vol. 101. P. 433a463.
6. Cleeremans A. Neural network modeling and connectionism. Mechanisms of implicit learning: Connectionist models of sequence processing. The MIT Press. 1993.
7. Elman, J.L. Finding Structure in Time // Cognitive Science. 1990. Vol 14. No. 2. P. 179a211.
8. Evans J. In two minds: dual-process accounts of reasoning. Trends in Cognitive Sciences. 2003. Vol. 7. No.10. P. 454a459.
9. Everett D.L. Cultural constraints on grammar and cognition in Pirah?: Another look at the design features of human language // Current Anthropology. 2005. Vol. 46. No 4. P. 621-646.
10. Fodor J., Pylyshyn Z. Connectionism and cognitive architecture: A critical analysis // Pinker S. & Mehler J. (Eds.) Connections and symbols Cambridge, MA: MIT Press. P. 3-7. 1988.
11. Ganis G., Thompson W.L., Kosslyn S.M. Brain areas underlying visual mental imagery and visual perception: an fMRI study // Brain Res Cogn Brain Res. 2004. Vol. 20. No. 2. P. 226-241.
12. Glockner A., Betsch T. Modeling option and strategy choices with connectionist networks: Towards an integrative model of automatic and deliberate decision making // Judgment and Decision Making. 2008. Vol. 3. No. 3. P. 215a228.
13. Grush R. The emulation theory of representation: motor control, imagery, and perception // Behavior Brain Science. 2004. Vol. 27. No. 3. P. 377-442.
14. Hesslow G. Conscious thought as simulation of behaviour and perception // Trends in Cognitive Sciences, Vol. 6. No. 6. P. 242a247.
15. Johnson J.G., Busemeyer J.R. A dynamic, stochastic, computational model of preference reversal phenomena // Psychological Review. 2005. Vol. 112. No. 4. P. 841-861
16. Newell A., Simon H. Computer Science as Empirical Inquiry: Symbols and Search // Communications of the Associations for Computing Machinery. 1975. Vol. 19. No. 3. P. 113a126.
17. Oaksford M., Chater N. Dual processes, probabilities, and cognitive architecture. Mind Soc. 2012. Vol. 1. P. 15a26
18. Park J., Bermudez V., Roberts R.C., Brannon E.M. Non-symbolic approximate arithmetic training improves math performance in preschoolers // Journal of Experience Child Psychology. 2016. Vol. 152. P. 278-293.
19. Pashler H. Dual-task interference in simple tasks: Data and theory // Psychological Bulletin. 1994. Vol. 116. No. 2. P. 220a244.
20. Reber, A. S. Implicit learning of artificial grammars // Journal of Verbal Learning and Verbal Behavior. 1967.Vol. 6. pp. 855?863.
21. Shepard, R.N. Cooper L. Mental Images and their Transformations. MIT Press. 1982.
22. Simon D., Snow C.J., Read S. The redux of cognitive consistency theories: evidence judgments by constraint satisfaction // Journal of Personality and Social Psychology. 2004. Vol. 86. pp. 814a837.
23. Timothy T.R. Neural networks as a critical level of description for cognitive neuroscience // Current Opinion in Behavioral Sciences. 2020. Vol. 32. P. 167-173.
24. Wassle H. Parallel processing in the mammalian retina // Nature Reviews Neuroscience. 2004. Vol. 5. No. 10. P. 747a757.
Comments
No posts found