1. Ketova K.V., Kasatkina E.V., Vavilova D.D. Klasterizatsiya regionov Rossijskoj Federatsii po urovnyu sotsial'no-ehkonomicheskogo razvitiya s ispol'zovaniem metodov mashinnogo obucheniya // Ehkonomicheskie i sotsial'nye peremeny: fakty, tendentsii, prognoz. 2021, T.14, №6. s.70–85.
2. Majorova E.A. Mashinnoe obuchenie v ehkonomicheskikh issledovaniyakh // Ehkonomika i upravlenie: problemy, resheniya. 2023, T.2, №3. str.224-238
3. Mironchuk V.A., Ivantsov K.A., Gordeev E.S. Prognozirovanie ehkonomicheskikh tsiklov s ispol'zovaniem mashinnogo obucheniya // Progressivnaya ehkonomika. 2024, №5. s.67–84.
4. Natal'son A.V. Razrabotka modelej mashinnogo obucheniya dlya prognozirovaniya ehkonomicheskoj ehffektivnosti biznes-protsessov // Ehkonomika i upravlenie: problemy, resheniya. 2024, T.5, №4 DOI: https://doi.org/10.36871/ek.up.p.r.2024.04.05.021.
5. Smirnov S.V., Kondrashov N.V., Kachur A.S. Makroehkonomicheskie prognozy i makroehkonomicheskie prognozisty // Voprosy ehkonomiki. 2024 (2) DOI: https://doi.org/10.32609/0042-8736-2024-2-23-48.
6. Tsifrovye tekhnologii v ehkonomike // URL: https://hsbi.hse.ru/articles/tsifrovye-tekhnologii-v-ekonomike/
7. Yaromenko N.N., Tkach R.V., Khabokhov R.R., Soroka Z.N., Rashidov M.M. Mashinnoe obuchenie kak innovatsiya v ehkonometrike // Ehkonomika i predprinimatel'stvo. 2024, №7(168). s.1116-1119.
8. Aliyev A.G. Conceptual basis of development and application of artificial intelligence technologies in forecasting economic processes // Artificial societies. 2023, v. 18, Special Issue. DOI: 10.18254/S207751800028599-7
9. Aliyev A.G. Problems and solution directions of transition to the green digital economy. Monograph, Baku, "Information Technologies", 2024, 406 p.
10. Aliyev A.G., Shahverdiyeva R.O. Organizational problems of innovation activities and their solution mechanisms. Monograph, Baku, "Information Technologies", 2023, 532 p.
11. Bernhard G. Humm, Phil Archer et al. New directions for applied knowledge-based artificial intelligence and machine learning. Informatik Spektrum, 2023, 46:65–78.
12. Caglayan A.E., Y?lmaz Soydan N.T., Kocarik Gacar B. Bibliometric analysis of the published literature on machine learning in economics and econometrics // Soc. Netw. Anal. Min. 2022, 12:109, pp.1-20.
13. Das P.K., Das P.K. Forecasting and Analyzing predictors of inflation rate: Using machine learning approach // J. Quant. Econ. 2024, 22. pp.493–517. DOI: https://doi.org/10.1007/s40953-024-00384-z.
14. Dementiev V.E. Cooperation between the state and business in forecasting and planning structural changes in the economy // Stud. Russ. Econ. Dev. 2024 (35), pp.328–336.
15. Huang P. Internet financial forecasting and digital economy development by using machine learning algorithm in the new consumption environment //Soft Comput. 2023, 27. pp.10285–10296.
16. Imamverdiyev Y.N. Deep LSTM method for forecasting Bitcoin prices // Problems of Information Technology journal. 2020, No.1. pp. 82–89.
17. Jiang Z. Prediction and management of regional economic scale based on machine learning model // Wireless Communications and Mobile Computing. 2024, pp.1-13. DOI: https://doi.org/10.1155/2024/9840674.
18. Mirza N. et al. Inflation prediction in emerging economies: Machine learning and FX reserves integration for enhanced forecasting // International Review of Financial Analysis. 2024, Volume 94, 103238.
19. Nurhana Roslan, Jastini Mohd Jamil et al. Prediction of student dropout in malaysian’s private higher education institute using data mining application // Journal of Advanced Research in Applied Sciences and Engineering Technology. 2025, Volume 45, Issue 2. 168-176. DOI: https://doi.org/10.37934/araset.45.2.168176.
20. Sengupta S. Towards Finding a Minimal Set of Features for Predicting Students' Performance Using Educational Data Mining // I.J. Modern Education and Computer Science. 2023, 3, pp.44-54.
21. Shirov A.A. Macrostructural analysis and forecasting in modern conditions of economic development // Stud. Russ. Econ. Dev. 2022 (33), pp.495–505. DOI: https://doi.org/10.1134/S1075700722050136.
22. Suleymanova A.M., Pashkevich V.E. Forecasting the income of a management company based on machine learning technologies // Digital models and solutions. 2024, vol.3, no.2. pp.17–27.
23. Sun D., Lu J. A new paradigm for simulating and forecasting China’s economic growth in the medium and long term // Chin. Geogr. Sci. 2022, 32. pp.64–78. DOI: https://doi.org/10.1007/s11769-021-1253-1.
24. Valiyev V., Suleymanov A., Namazova N. A small macro econometric model of azerbaijan economy // Journal of Ecohumanism. 2024, volume 3, No7, pp.1051–1063. DOI: https://doi.org/10.62754/joe.v3i7.4268.
25. Zheng Y. et al. Deep learning in economics: a systematic and critical review // Artificial Intelligence Review. 2023, (56), pp.9497–9539. DOI: https://doi.org/10.1007/s10462-022-10272-8.
Comments
No posts found